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Transient three-dimensional numerical analyses of shallow bubble column
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Abstract

Two-phase flow in a shallow bubble column (radius equal to the height) was studied. The primary objectives were to study both the
effect of the free surface on the whole flow mode and the three-dimensionality in the whole domain. Air bubbles were injected through a
central porous bottom wall of a cylindrical water tank. The flow pattern was visualized with dispersed aluminium particles. The velocity
of the liquid phase was measured with a laser-Doppler velocimeter. The system was numerically analysed with a dispersed flow model.
The inertial terms in the momentum equations were approximated by the QUICK scheme. Two models for the top surface were employed,
namely either slip or non-slip conditions. The computed result with non-slip conditions agreed fairly well with the experimental result. A
three-dimensional calculation was carried out with non-slip conditions for the top water surface. The calculated flow pattern agreed better
with the experimental pattern than the two-dimensional calculation. In the results, two spiral vortices moving vertically were found outside
the central upward flow. The flow was strongly three-dimensional, even though the vessel was shallow. © 2000 Elsevier Science S.A. All
rights reserved.
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1. Introduction

Gas–liquid two-phase flow problems arise in many indus-
trial processes and have been analysed in various fields of
engineering.

A two-phase flow in a vessel usually has a free surface.
A variable height or shape of the liquid in a vessel with a
free surface has been considered in many reports (e.g., Ref.
[1]). However, there appear to be few reports which have
considered the purity of the liquid. A free surface of even a
slightly contaminated liquid is similar to a solid wall [2]. It is
well known that the terminal velocity of an ascending bubble
in a pure static liquid is different from that in a contaminated
liquid as an example of this effect. As discussed by Bernal
et al. [3], the capillary stress in a boundary layer at the top
surface is balanced by the viscous stress and this is also the
case at the bubble surface.

In a large and/or deep vessel, a bubble plume often sways
and the flow is unsteady and/or three-dimensional. Many
papers concerning such a flow have been reported. Becker
et al. [4] carried out a calculation and experiment for un-
steady two-dimensional gas–liquid flow in rectangular bub-
ble columns with good agreement between them. We also
studied such a flow in a vertical cylinder and obtained os-
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cillatory flow patterns [5]. However, there are few reports
about the flow in a shallow vessel. Thus the flow is often
considered to be almost two-dimensional and axisymmetric
in a cylinder.

In this paper, both numerical and experimental analy-
ses were carried out for the two-phase flow problems in a
shallow vertical cylinder. Two models for the top surface
were considered, namely either slip or non-slip conditions.
Furthermore, a three-dimensional model was employed.

2. Experimental details

The experimental set-up is shown schematically in Fig. 1.
The inner radius of the acrylic cylinder is 80 mm. The cylin-
der was filled with tap water to a height of 80 mm. Air
bubbles were injected through the central porous bottom
wall of the cylinder into a water tank with a mass flow
rate Q=1.67×10−6 m3 s−1. This gas rate and, hence, gas
hold-up is relatively low compared with that used in a prac-
tical bubble column. Such a low gas hold-up is often utilized
in a bubble column for wastewater treatment and biological
processes. The standard maximum diameter of the hole is
100–150mm andrc=10 mm.

Firstly, to understand the whole flow pattern, aluminium
particles were dispersed into water which was then illumi-
nated by a slit light from a projector. In order to obtain bet-
ter visualization, the cylinder was surrounded by a square
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Fig. 1. Problem Schematic diagram of experimental set-up.

acrylic box, and tap water was filled in between. Flow pat-
terns were taken by a camera, with a shutter speed of 1 s.

Secondly, the velocity profile of the liquid phase was mea-
sured by a laser-Doppler velocimeter (LDV) with a forward
scattering method. Data samples of 256 pieces were taken
at each point.

3. Theoretical analyses

For numerical analysis, the following assumptions were
utilized:
1. mass transfer between the liquid and gas phases does not

exist;
2. the liquid and gas phases are treated as incompressible

fluids;
3. the temperature in the domain is constant and uniform;
4. coalescence and fragmentation of the bubbles are not

considered;
5. no turbulence models are employed.

From the above assumptions, the governing equations be-
come as follows.

3.1. Continuity equations

k=G (gas phase), L (liquid phase)

∂εk

∂t
+ ∇∇∇ · (εkvvvk) = 0 (1)

εL + εG = 0 (2)

The summation of two equations with k=G and L in Eq.
(1) leads to Eq. (3) by considering Eq. (2) [6]. This equation
does not have any time-dependent terms.

∇∇∇ · (εGvvvG) + ∇∇∇ · (εLvvvL) = 0 (3)

3.2. Dispersed flow model

In this numerical analysis, a dispersed flow model [7] was
adopted. The model equations for a dispersed flow are as
follows:

momentum equation for a liquid phase

εLρL
DLvvvL

Dt
= −εL∇∇∇p + εLFFF V + FFF D + FFF L − ρLgεL (4)

momentum equation for a gas phase

εGρG
DGvvvG

Dt
= −FFF D − FFF L + (ρL − ρG)gεG (5)

whereDk/Dt is the material derivative following phase k.

3.3. Interfacial force

(1) Viscous force: the viscous forceFFF V is expressed as
shown in Appendix withµ. Hereµ is the apparent viscos-
ity for a bubbly flow. Following Taylor [8], the following
equation was employed

µ = µL(1 + εG) (6)

(2) Drag force

FFF D = 3

4

CDεGρLvvvr |vvvr|
dB

(7)

whereCD is the drag coefficient and the following relation
of Stokes and Schiller–Naumann was used.

CD =
{

24/Re Re≤ 2
(24/Re) (1 + 0.15Re0.687) Re≥ 2

(8)

where Re is the bubble Reynolds number, Re=ρLdBvvvr/µL,
dB is the bubble diameter andvvvr is the relative velocity
(=vvvG−vvvL); dB was set to 2.0 mm.

(3) Lift force [9]

FFF L = CLρLεGvvvr × (∇∇∇ × vvvL) (9)

whereCL is the lift force coefficient.CL was set to a constant
value: 0.2 by Ref. [5].

3.4. Numerical procedure

The above momentum equations were approximated by
finite difference equations. Time discretization was approx-
imated by an explicit method and inertial terms by the
QUICK scheme [10]. The pressure distribution was solved
with the HS-MAC method.

The initial conditions are as follows. The liquid is static
and no bubbles exist in the cylinder.

Table 1
Calculation conditions

No. Grid numbers Top surface

r θ z

1 24 – 24 Non-slip
2 40 – 40 Non-slip
3 96 – 80 Non-slip
4 120 – 120 Non-slip
5 96 – 80 Non-slip
6 96 – 80 Slip
7 40 36 40 Non-slip
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Fig. 2. The effect of the grid number on the stream lines of the liquid phase computed with a two-dimensional model: (a) 24×24; (b) 40×40; (c) 96×80;
(d) 120×120; (e) photograph.

Fig. 3. Flow pattern of the liquid phase with different boundary conditions for the top surface: (a) slip conditions; (b) non-slip conditions; (c) photograph.

The boundary conditions are as follows:
liquid phase

wall : uL = vL = wL = 0
top surface : free or rigid conditions

where the height of the liquid surface is assumed to be
flat from the experimental observation, although a deformed
surface was studied by Matsumoto and Murai [1];

gas phase

wall : slip conditions
top surface : bubbles leave from a free

surface immediately(
∂uG

∂z
= ∂vG

∂z
= ∂wG

∂z
= ∂εG

∂z
= 0

)

Fig. 4. Magnification of the top right-hand corner of Fig. 3: (a) slip conditions; (b) non-slip conditions; (c) experimental result with LDV.

The calculation conditions are shown in Table 1.

4. Results and discussion

4.1. Effect of grid number

Fig. 2 shows the effect of the grid number on the stream
lines of the liquid phase computed with a two-dimensional
model (cases 1–4 in Table 1). Upward flow caused by as-
cending bubbles in the central region makes a large vortex
(main vortex) in the vertical section. The main vortex calcu-
lated with coarse grids (Figs. 2a and b) is small. The main
vortex computed using a higher order upwind scheme with
a coarse grid is sometimes smaller than the real one for high
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Fig. 5. A series of instantaneous velocity vectors in the horizontal section atz/h=0.5 and those of the circumferential vector potential component in the
vertical section: (a)t=6.55 s; (b)t=13.1 s; (c)t=19.6 s; (d)t=26.2 s.

Re number flow [11]. On the other hand, the sizes of the
main vortices in Fig. 2c and d are almost the same. There-
fore, the grid number 96×80 appears to be sufficient for this
problem.

4.2. Boundary condition at the top surface

Chu et al. [2] reported that the flow near a slightly
contaminated free surface is similar to that with a solid top
surface in a single-phase flow problem.

Fig. 3 shows the flow pattern of the liquid phase with slip
conditions (a) and with non-slip conditions (b) for the top
surface (cases 5 and 6 in Table 1). A small vortex (secondary
vortex) can be seen in the top right-hand corner in Fig. 3b.
This can be seen in the photograph, but not in the calculated
flow pattern with slip conditions. This tendency agrees with
that obtained by Chu et al. [2].

Fig. 4 shows a magnification of the top right-hand corner
of Fig. 3. The size of the secondary vortex calculated with
non-slip conditions is almost the same as the experimental
value. In this experiment, tap water was used, which is
usually considered to be contaminated. Chu et al. [2] and
Bernal et al. [3] explained that the advection of surface
active agents by a vortex motion underneath can generate
capillary stresses at the surface that must be balanced by
viscous stresses in a boundary layer at the free surface.
Tryggvason et al. [12] have carried out calculations consid-
ering the effect of the amount of surface contaminant. How-
ever, it was difficult to obtain a value for the contaminant.
Therefore, non-slip conditions are effective and convenient
for this problem, even though they may not be exact.

4.3. Three-dimensional analysis

Fig. 5 shows a series of instantaneous velocity vectors in
the horizontal section atz/h=0.5 and those of the circum-

ferential vector potential component in the vertical section
with a three-dimensional model (case 7 in Table 1). From
this figure, the size of the main vortex increases as the
circumferential flow develops. Furthermore, the obliquely
descending flow towards the bottom of the vessel can be

Fig. 6. Time averaged velocity distribution of liquid phase: (a) vertical
distribution of the radial velocity alongr/rout=0.5; (b) radial distribution
of the vertical velocity alongz/h=0.5.
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seen after the flow develops sufficiently in Fig. 5c and d.
This flow was not obtained by a two-dimensional calcula-
tion. Accordingly, this obliquely descending flow would be
caused by a downward flow in theθ–z section.

Fig. 6 shows both experimental and calculated velocity
distributions of the liquid phase. Fig. 6a shows the verti-
cal distribution of the radial velocity component along the
vertical line at r/rout=0.5, and Fig. 6b shows the radial
distribution of the velocity component along the radial line
at z/h=0.5. The data represent the value averaged over 256
samples in the experiment or 240 samples in the calcula-
tion, over a certain time period at each point. The periods
are 13.1 s in the calculated results and about 10–20 s in the
experimental results, depending on the particle sampling
conditions. The calculated profiles agree reasonably with
the experimental ones. In particular, good agreement can
be seen near the top surface approximated with non-slip
conditions in Fig. 6a.

4.4. Unsteady analysis of developed flow

Fig. 7 shows a series of instantaneous short time streak
lines from 30×30 points in the vertical section. The length

Fig. 7. A series of instantaneous streak lines from 30×30 points in the vertical section (1t=1.0 s): (a)t=26.2 s; (b)t=29.5 s; (c)t=32.7 s; (d)t=36.0 s;
(e) t=39.3 s; (f) t=42.6 s; (g)t=45.8 s; (h) photograph.

of each line corresponds to the motion of a particle which
can move at the same speed as the liquid flow for 1 s. This
term agrees with the shutter speed of the camera. An experi-
mental photograph is shown in Fig. 7h. Here, the calculated
streak lines do not exactly correspond to the experimental
path lines. From this figure, the size and location of the main
vortices change at every moment. Moreover, the descend-
ing flow in the lower part of the main vortices extends and
shrinks alternately.

Fig. 8 shows multiple streak lines around a central upward
flow region. The small circles in this figure represent the
terminal points. Two vertical spiral flows can be seen around
the central upward flow. The streak lines in the left spiral flow
are denser than those in the right. This means that the upward
velocity of the left spiral flow is smaller than that of the right.
Such a vertical spiral flow appeared every second, though
the numbers and locations changed with time. It is difficult
to describe such a flow with velocity vectors or shorter term
streak lines in a horizontal section like Fig. 7. We have not
seen any previous reports that have described such vertical
spiral flows. As seen in the photograph of Fig. 7h, the flow
is almost axisymmetric. From such a photograph, the flow
of this system may be considered to be two-dimensional.
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Fig. 8. Streak lines of liquid flow just outside a central rising bubble plume. Small circles are terminal points.

However, the flow of the liquid phase appears to be strongly
three-dimensional as seen in Fig. 8. Nevertheless, the gas
phase is almost axisymmetric, because the water height is
low compared with the upward velocity of the gas phase
(about 0.2 m s−1). The streak lines of the gas phase based on
the gas velocity (not shown due to space limitation) arrive at
the top surface almost linearly in spite of this complicated
convection of the liquid phase.

Two opposite results, i.e. a three-dimensional spiral liquid
flow and an almost axisymmetric gas flow, appear to be
useful to explain the structure of bubble plumes swaying in
a deep and/or large vessel. Bubble plumes also sway slightly
in this flow, although it is not clear because of the shallow
vessel. This may be affected by such spiral flows.

5. Conclusions

Two-phase flow in a shallow vertical cylinder was inves-
tigated numerically and experimentally. The following con-
clusions were obtained.
1. An obliquely descending flow towards the centre bot-

tom of the vessel was observed in the visualized result.
Three-dimensional numerical analyses successfully sim-
ulated this flow.

2. The calculated result with non-slip conditions at the top
surface agreed fairly well with the experimental result.
Non-slip conditions for a free top surface are more ap-
propriate than slip conditions for this problem with tap
water.

3. Streak lines from multiple points represent a detailed flow
mode including two spiral vortices moving vertically just
outside the central bubble plume.
Although the present system may be presumed to be

almost axisymmetric and two-dimensional because the
vessel is small and shallow, the flow is, in fact, strongly
three-dimensional and the circumferential velocity compo-
nent is quite dominant for this problem.

6. Nomenclature

CD drag coefficient
CL lift force coefficient
dB diameter of a bubble (m)
FFF D drag force per unit volume (N m−3)
FFF L lift force per unit volume (N m−3)
FFF V shear force per unit volume (N m−3)
g gravitational acceleration (m s−2)
h height of liquid surface (m)
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p pressure (Pa)
Q injected gas flow rate (m3 s−1)
r radial coordinate (m)
rc radius of gas injection porous plate (m)
Re Reynolds number (=ρLdBvvvr/µL)
rout radius of vessel (m)
t time (s)
u radial velocity component (m s−1)
vvv velocity vector (m s−1)
v circumferential velocity component (m s−1)
vvvr slip velocity (=vvvG–vvvL) (m s−1)
w vertical velocity component (m s−1)
z vertical coordinate (m)

Greek letters

ε void fraction (gas hold-up) (-)
θ circumferential coordinate (rad)
µ viscosity (Pa s)
ρ density (kg m−3)

Subscript

G gas phase
k gas phase (k=G) or liquid phase (k=L)
L liquid phase

Operator

D/Dt=∂/∂t+vvvk·∇

Appendix

The viscous forceFFF V which includes the variable viscos-
ity is expressed for each component of cylindrical coordi-
nates as follows:
r-component

FFF V,r = −
{

1

r

∂

∂r
(rτrr ) + 1

r

∂τrθ

∂θ
− τθθ

r
+ ∂τrz

∂z

}
(A1)

θ -component

FFF V,θ = −
{

1

r2

∂

∂r
(r2τrθ ) + 1

r

∂τθθ

∂θ
+ ∂τθz

∂z

}
(A2)

z-component

FFF V,z = −
{

1

r

∂

∂r
(rτrz) + 1

r

∂τθz

∂θ
+ ∂τzz

∂z

}
(A3)

whereτ is a stress tensor and expressed as follows:

τrr = −µ

{
2
∂u

∂r
− 2

3
(∇∇∇ · vvv)

}
(A4)

τθθ = −µ

{
2

(
1

r

∂v

∂θ
+ u

r

)
− 2

3
(∇∇∇ · vvv)

}
(A5)

τzz = −µ

{
2
∂w

∂z
− 2

3
(∇∇∇ · vvv)

}
(A6)

τrθ = τθr = −µ

{
r

∂

∂r

(v

r

)
+ 1

r

∂u

∂θ

}
(A7)

τθz = τzθ = −µ

{
∂v

∂z
+ 1

r

∂w

∂θ

}
(A8)

τzr = τrz = −µ

{
∂w

∂r
+ ∂u

∂z

}
(A9)
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